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Abstract 

   

The effective maintenance activities, at relevant frequencies, are designed to maintain functionality and prevent 

catastrophic failure of process plant equipments  thus ensuring that the risk associated with it  are limited. To diagnose 

the unreliable aspects of the machine, root cause failure analysis (RCFA) of the component failure , as a system is 

carried out by listing all the possible causes related to the machine units . The ability to predict and prevent failures and 

to make informed decisions based on consolidated equipment health and performance data becomes critical. However 

such advanced, complex and integrated systems result in complex failure modes, which are more difficult to diagnose 

and repair, and becoming more complex to operate and maintain. The paper focuses on developing an integrated 

maintenance management framework to establish „just-in-time‟ maintenance and to ensure continuous improvements 

based on maintenance domain experts as well as operational and historic data. To do this, true degradation of 

components must be identified. True level of degradation often cannot be inferred by the mere trending of condition 

indicator’s level (CBM), because condition indicator levels are modulated under the influence of the diverse operating 

context. Besides, the maintenance domain expert does not have a precise knowledge about the correlation of the diverse 

operating context and level of degradation for a given level of condition indicator on specific equipment. Efforts have 

been made in here to identify the true degradation pattern of a component by analyzing these vagueness and imprecise 

knowledge. Key question for researchers to address such challenges should be “What is the optimum preventive 

maintenance time interval?” Too short intervals would lead to unnecessary prevention costs; no preventive maintenance 

would lead to breakdowns, which may affect production, and inflict money losses on the firm as discussed previously; 

and too long intervals would result in both inconveniences, as they will involve preventive maintenance actions and 

would lead to uncontrolled breakdowns. A comprehensive overview helps to overcome unforeseen events and incidents 

that might lead to catastrophe.  
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Problem Formulation 

 
1
 In practice, the choice of the optimum maintenance 

strategy is not a simple task. Implementation of such 

philosophy for complex installations is a difficult and a 

complex task. Key question to address such challenges 

should be “What is the optimum preventive maintenance 

time interval?”.  

 True level of degradation often cannot be inferred by 

the mere trending of condition indicator‟s level (CBM), 

because condition indicator levels are modulated under the 

influence of the diverse operating context (normal, 

marginal, hostile, operating complexity, etc). Besides, the 

maintenance domain expert does not have a precise 

knowledge about the correlation of the diverse operating 

context and level of degradation for a given level of 

condition indicator on specific equipment. Advanced 

software tools, like fuzzy logic, considers these vagueness 

and imprecise knowledge (better than the conventional 
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statistical modeling) to quantify imprecise and uncertain 

information. 

 

Maintenance Planning 

 

An overall plan has to be prepared for the production 

facilities for the conduct of „just-in-time‟ maintenance 

program .The results from the criticality analysis 

classification are useful when defining criteria for 

prioritizing work orders. Prioritization of maintenance 

(using FMECA or Fuzzy Logic) should be done based on 

the risk the failure represents, described as consequence 

and failure impact/probability of failure. Continues 

improvements on accurate planning can be made by 

getting updated inputs from improved root cause failure 

analysis and human-technology-organization (HTO) 

integration.(Look also Appendix C, prioritization of 

corrective maintenance recommended by NORSKO-Z008 

rev. 3, based on the risk the failure represents, described as 

consequence and failure impact). Criticality of failures can 

be classified based on Table 6. 
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Optimization of Maintenance Interval 

 

By identifying the root cause for the failure, achieving the 

desired system performance, e.g. reliability, availability, is 

determined in system design and development, but also 

through implementation of efficient and effective 

maintenance strategies. The overall objective of 

maintenance process is to increase the profitability of the 

business in a total life cycle cost (LCC) perspective 

without compromising HSE. The life of a project is 

extended by improving maintenance performance. 

Optimization of maintenance strategies is therefore 

expected to provide a basis for development of cost 

effective maintenance strategies which minimizes the 

consequences related to HSE and economy.  

 There are different types of maintenance, of which the 

main types are preventive maintenance (PM) and 

corrective maintenance (CM). Furthermore PM can be 

grouped in to two.  

 

a) Age/time/condition based; and  

 

b) Opportunistic based 

 

Condition-monitoring is already an integral part of the 

condition-based maintenance (CBM) strategy of existing 

production facilities.If potential failures are detected early 

enough, it is possible to plan for the maintenance action 

when the component is still on uptime.In order to exploit 

the information from condition monitoring into 

maintenance decision making, it is necessary to establish a 

relationship between the state of the item (or system) and 

one, or more, condition-monitored state variables, denoted 

by say, X(t). The relationship between the state of the item 

and X(t) can be determined by using mathematical models 

or expert judgments to predict the behavior of the 

deterioration process. It is often of interest to find the 

probability of failure based on the value of the condition-

monitored state variables. 

 Different subsystems and components will have 

different deterioration processes and measures, depending 

on their construction, materials, usage, and exposure to 

external adverse conditions. Deterioration may be modeled 

based on physics of failure and characteristics of the 

operating environment; i.e., modeling deterioration in 

terms of a time-dependent stochastic process. Relevant 

models are, for example, the P-F interval , proportional 

hazard modeling (PHM)-which is multivariate regression 

analysis and Markov-processes.  

 We have taken the case of a reciprocating compressor 

which is the heart of a Hydro processing plant.it has many 

components which affect its performance. The most 

important component which degrades to affect it’s 

performance is the rider ring. The  rider ring degradation  

for a period of two years were taken and it is observed that 

it follows weibull distribution. So its remaining useful life 

can be calculated from the  weibull plot. 

 

Rider Ring Data 

 
Inspection Degradation dimension Unit ID 

Time 

2 6.56 mm A 

4 6.34 mm A 

6 6.04 mm A 

8 5.76 mm A 

10 5.24 mm A 

12 4.76 mm A 

2 6.35 mm B 

4 6.18 mm B 

6 6 mm B 

8 5.76 mm B 

10 5.34 mm B 

12 5.05 mm B 

2 6.43 mm C 

4 6.34 mm C 

6 5.76 mm C 

8 5.43 mm C 

10 5.31 mm C 

12 4.89 mm C 

2 6.79 mm D 

4 6.34 mm D 

6 6.1 mm D 

8 5.79 mm D 

10 5.23 mm D 

12 4.99 mm D 

 

 

 

 

The above data shows the  rider ring thickness of  four  

cylinders  A.B,C,D in a compressor. 

 The  threshold value of the rider ring is 3mm below 

which it will damage the compressor. 

 Can we  get from weibull when each of the  ring will 

achieve 3mm thickness. 

 
Report 

Type 
Degradation Fit Results 

User Info 

User TRINATH SAHOO 

Company INDIAN OIL 

Date 09-12-13 

Parameters 

Unit ID 
Parameter 

a 
Std - a 

Parameter 

b 
Std - b 

A -0.179714 0.014775 7.041333 0.115084 

B -0.132286 0.011218 6.706 0.087373 

C -0.158857 0.014692 6.805333 0.114437 

D -0.180571 0.01002 7.137333 0.078042 
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Report Type Degradation Results 

User Info 

User TRINATH SAHOO 

Company INDIAN OIL 

Date 09-12-13 

Parameters 

Distribution:  Weibull-2P   

Analysis:  RRX   

CB Method:  FM   

Ranking:  MED   

Beta 11.661042   

Eta (Mon) 25.263565   

LK Value -9.293592   

Rho 0.866028   

Fail \ Susp 4 \ 0   

LOCAL VAR/COV MATRIX 

  
Var-

Beta=18.555180 
CV Eta Beta=2.632614 

  
CV Eta 

Beta=2.632614 
Var-Eta=1.418283 

 

The consequence of component/sub-system failure on a 

system can be classified into three categories, critical, 

semi-critical and non-critical based on function criticality, 

operating context and complexity of the 

equipment/technology. The equipment‟s true degradation 

is estimated using condition indicators (or variables) like, 

vibration monitoring (e.g. belt, gear drive, or surfaces with 

components with relative motion), temperature (e.g. 

electrical components, bearing house, hydraulic pumps 

etc.), lubricant monitoring (transmission components like 

gears, cams, etc.).  

 The monitoring frequency could be periodic/ 

continuous. The operating context is important factor, 

which influences degradation. The adverse operating 

context in the  offshore can also be classified into three 

operating regimes (Edwin and Chaturvedi, 2006), namely; 

normal, marginal and hostile operating contexts. 

 Under the influence of operating context, condition 

indicator levels are modulated, thereby true level of 

degradation cannot be inferred by the mere trending of 

condition indicator‟s level. Hence, operating context 

needs to be considered while using condition indicator 

level to understand the true state of equipment. On the 

other hand, the maintenance domain expert does not have 

a precise knowledge about the correlation of the operating 

context and level of degradation for a given level of 

condition indicator on specific equipment. Expert System 

theory (e.g. Artificial Intelligence) considers these 

vagueness and imprecise knowledge (i.e. by integrating 

quantitative and qualitative knowledge) to come up with 

possibilities of failure degradation modes and hence 

improving our decision making to improve maintenance 

performance 

 The uncertainty between initiation of degradation and 

reaching to unacceptable levels is shown in the Figure 

below. As shown in the figure, the performance decreases 

over a period of time and drops down to an unacceptable 

level (potential failure, tp) and leads to a functional failure 

at a later time (tf). The degradation of a component/system 

may vary widely due to above mentioned factors. Owing 

to this variation and associated randomness, the potential 

and functional failure times are also not precise. Hence, 

the frequency of monitoring decided on the basis of P-F 

interval (PF Interval = tf - tp) is also a variable. Some say 

PF interval itself is hard to define. 

 

 

 
 

uncertainty in the PF interval (modified from Edwin 

and Chaturvedi, 2008)  
 

(tp =potential failure time, tf =functional failure time) 

 

Since this interval is uncertain and degradation is a 

random event (it could be pattern A, pattern B, pattern C. 

etc), predicting an impending failure is highly 

probabilistic. Therefore, the probability of detecting a 

failure in advance is not a crisp event and fuzziness 

(uncertainty) is associated with it. This uncertainty can be 

better handled with fuzzy logic using appropriate 

membership function to arrive at estimating appropriate 

possibility level. Fuzzy logic uses to reflect the dispersion 

of data adequately. The dispersion includes variation in 

human performance, vagueness in adverse 

operating/environmental conditions and vagueness in the 

system performance due to age.  

 Rule-based fuzzy logic can be integrated into the 

maintenance program to determine the times for the 

periodic PM actions, considering maintenance 

imperfections. Indeed, considering human factors in 

maintenance programs is indispensable to assure more 

accurate results. However due to the difficulty to handle 

by their modeling, most theoretical maintenance models 

do not consider these factors.  

 Therefore, fuzzy logic can be an important tool to 

include them. We modify the maintenance program at 

every maintenance action according to the duration of 

maintenance actions and the technician‟s experience 

seeking to optimize the maintenance program („just-in-

time‟) so as to minimize the cost or maximize the 

availability of the system to compensate for high 

maintenance cost. Fuzzy Inference System (FIS) on a 

hardware platform can be developed for a real-time 

application.  

 Fuzzy Logic theory approach proposes to estimate the 

“Possibility of failure mode detection”. For offshore, three 

fuzzy variables are important to be considered in the fuzzy 

inference System i.e.: level of condition indicator;   

frequency of monitoring; and operating context.  



T.Sahoo et al                                                             Fuzzy Logic-based Maintenance Optimization 

 

4 |International Journal of Advance Industrial Engineering Vol.2, No.1 (March 2014) 

 

Table 1 Level of condition indicator  

 
Catastrophic   Complete mission failure,  9,10 

Critical  Major mission degradation,  6,7,8 

Moderate  Minor mission degradation,  3,4,5 

As new  Less than minor mission degradation 1,2 

 

Table -2 Operating context 

 
hostile Very fast  failure due to operating context or  

loss of system 

9,10 

Marginal  Major mission degradation, , or major  
system damage due  to operating context. 

5,6,7,8 

Normal  Less than minor mission degradation, or 

minor system damage due  to operating 

context. 

1,2,3,4 

 

Frequency of monitoring 

 

Table 3 Probability categories 

 
Rank occurrence meaning 

9,10 online continuous  

7,8 frequently Repeated  

4, 5, 6 Occasional Occasionally taken 

12,3 Unlikely Never taken 

 

Create the Fuzzy Membership Functions 

 

Fuzzy control systems are “expert” systems, meaning 

they’re modeled on the expert experience of real people. 

The next step is to incorporate such experience in defining 

the fuzzy membership functions for each input and output. 

 

Fuzzification process 

 

The fuzzification process converts the occurrence and  

severity  inputs into their fuzzy representation which can 

be then matched with the premises of the rules into the 

rule base.In the fuzzification subprocess, the membership 

functions defined on the input variables are applied to their 

actual values, to determine the degree of truth  for each 

rule premise too. 

 

Construct the Rule Base 

 

Now we write the rules that will translate the inputs into 

the actual outputs. After  the fuzzy input set have been 

defined, the conceptual model for the fuzzy criticality 

system is completed by writing the rules that describe the 

riskiness of the system for each combination of input 

variables. Several rules are described in the next table. 

 

Table -4 

 

Rule  occurrence severity risk 

#1 Low Moderate Moderate 

#2 Low high important 

#3 Low Very high  important 

#4 moderate moderate important 

#5 moderate high  Very important 

 

The characterization of the fuzzy system is based on 

expert knowledge and usually appears in the form of If-

then rules, which can be easily implemented by fuzzy 

conditional statements. The collection of fuzzy rules, as in 

the previous table, gives the rule base. Fuzzy rules are 

often formulated in linguistic terms than in numerical 

terms. The proper choice of variables is fundamental in 

characterizing the operation of a fuzzy system and their 

selection has a significant effect on the accuracy of the 

system. 

 

Inference 

 

In the inference sub process, the truth-value for the 

premise of each rule is computed, and applied to the 

conclusion part of each rule. This results in one fuzzy 

subset to be assigned to each output variable for each rule. 

In our example only there is only four logical rules, which 

are practically used. On the basis of the Risk Assessment 

Matrix they are the following ones: 

 

Rule (A): If severity is critical and probability is 

occasional then risk is high; 

Rule (B): If severity is moderate and probability is 

occasional then risk is medium; 

Rule (C): If severity is critical and probability is seldom 

then risk is medium; 

Rule (D): If severity is moderate and probability is seldom 

then risk is low 

 

It is very interesting that, using the given rules, the risk – a 

result of a rule – can be high, medium and low.  

 

The most frequent techniques for the fuzzy inference 

processor called “min-max inference” to calculate 

numerical conclusion to linguistic rules based on the 

system input values. The result of  this process is called 

“fuzzy conclusion”. The rule evaluation consists of 

determining the smallest (minimum) rule antecedent, 

which taken to be truth value of the rule, then applying 

this truth value to all consequences of the rule. We will 

present in our example the following rules  

 

Rule (B): If severity is moderate and probability is 

occasional then risk is medium; 

Rule (C): If severity is critical and probability is seldom 

then risk is medium 

 

Optimized Method of Maintenance 

 

In order to locate the weak link  of the compressor  and its 

components ,  the first stage to be realized at the time of 

the study of the reliability of the compressor  is the 

determination and the analysis of  risk of each of its 

components. 

 Fuzzy logic   study mainly allows optimizing the direct 

costs .Indeed it is a clever method of diagnosis to the 

extent that it predicts a number of weaknesses, defects, 

anomalies and failures at all the elements that contribute to 

system availability 
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Conclusion and Future Research Directions  
 

Integrated maintenance management framework in the Oil 

and Gas Industries helps to explore the use of 

sophisticated technical solutions. The application of such 

sophisticated technologies in maintenance of complex 

production facilities can bring huge benefits in terms of 

reducing risk. To utilize such sophisticated technologies, it 

is important to understand the interconnected issues and 

challenges. Some of the potential benefits of the use of 

such integrated maintenance management include:   

 

 Enhancement in terms of better and effective control 

of potential events and incidents that may lead to 

functional failures.  

 Model, analyze and predict the behavior of systems in 

more realistic manner (removes vagueness in 

maintenance planning).  

 Helps in a quick review of ranking of numerous 

maintenance tasks to plan suitable maintenance 

practices /strategies for improving system 

performance  
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