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Abstract 
  
In this research work, the approximate solutions for nonlinear singular initial value problems are to be calculated by 
using modified Laplace decomposition (MLDM). The modified Adomian decomposition method and Homotopy 
perturbation methods are to be used to calculate the approximate solutions for the same problem. Moreover, the 
convergence analysis and the error found for the approximate solution are to be discussed. To prove the robustness 
and effectiveness of the proposed method, several examples are to be considered and the results calculated in this way 
will be compared with those obtained from other two above mentioned method. The time consuming behaviour of 
these method will be noted in order to check the simplicity, accuracy and efficiency of method. 
 
Keywords: Initial Value Problems, Boundary Value Problems, Modified Laplace Decomposition Method, Homotopy 
Perturbation Method. He,s polynomials. 
 
 
Introduction 
 
Initial value problems of the Lane-Emden type, which 
can be stated in the subsequent form, can be used as 
models for an extensive range of problems in the fields 
of mathematical physics and astronomy. It can be 
expressed in writing: 
 

(𝑓′)′ +
ℎ

𝑥
 𝑓′ + f(x,y)=g(x)  0≤x≤1                  (1.1) 

 

with constraints y(0)=A,  y′(0)=B                   
 
where h , x > 0 and f(x, y) is a continuous real-value 
function and g(x) is an analytical function. This 
equation is helpful for studying various designs. The 
numerical solution of LE problem is not easy because 
of the singularity behavior at origin. The approximate 
solution of the LE equation is given by Adomian 
decomposition, homotopy perturbation, variational 
iteration, differential transformation, wavelets-
collocation methods and so forth. This method 
approximates the solution of a nonlinear differential 
equation by treating the nonlinear terms as a 
perturbation about the linear ones, and unlike 
perturbation theories is not based on the existence of 
some small parameters.  

 
*Corresponding author’s ORCID ID: 0000-0002-0921-086X 
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Wazwaz has given a general way to construct exact and 
series solutions to Lane-Emden equations by 
employing the Adomian decomposition method. The 
paper introduces an approximate approach for solving 
the Lane-Emden equation accurately. The following 
work proposes the Homotopy Perturbation Method 
(HPM) with Laplace Transform (LT) to solve the 
general kind of Lane-Emden differential equations: The 
"Preliminaries" section contains information on the 
homotopy perturbation approach. In the "Results and 
discussion" section, a few instances of a several types 
are provided. The conclusion is eventually discussed in 
the section titled "Findings." 

 
Vibrational Iteration Method 
 

Many scholars have used the vibrational iteration 
method, first proposed by J. H. He,to solve various 
linear and nonlinear models. The method's basic idea is 
to build a correction functional using a general 
Lagrange multiplier, and to select the multiplier so that 
its correction solution is better than the initial 
approximation. Now, in order to demonstrate the 
method's fundamental idea, we will look at the general 
nonlinear differential equation presented below in the 
following form: 

 
Pu(x) + Qu(x) = g(x)               (1.2)  
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Where P is a linear operator, Q is a nonlinear operator 
and g(x) is a known analytical function. We can 
construct a correction functional according to the 
variational method as: 
 

 un+1(x) = un (x) +∫ 𝜆(𝑃𝑢𝑛(𝜉) + 𝑄𝑢𝑛(𝜉) − 𝑔(𝜉))𝑑(𝜉)
𝑥

0
,,    

n ≥ 0                 1.3
  
When, using variational theory, is a generic Lagrange 
multiplier, the subscript n designates the nth 
approximation, and un is regarded as a confined 
variation, with u n = 0. The derived Lagrange multiplier 
will be applied along with a carefully selected initial 
approximation, u0, to produce successive 
approximations, un+1(x). The method's applicability to 
singular initial value issues of the Lane-Emden type is 
demonstrated in the examples that follow. 
 
Adomian Decomposition Method 
 
For both linear and nonlinear differential equations, 
integral equations, and integro-differential equations, 
the Adomian decomposition method appears to be 
effective. Adomian first described the approach in his 
books and other relevant research publications in the 
early 1990s. Essentially, the approach is a power series 
approach akin to the perturbation technique. It 
consists of summarising an infinite number of 
components that are defined by decomposition series, 
such as equation 1, from the unknown function u(x) of 
any equation. In order to illustrate the technique, we 
will express u(x) as a 
 

u(x)= ∑ 𝑢n(𝑥)∞
0                                                          (1.4) 

 
Or likewise 
 
u(x)= u0(x)+u1(x)+u2(x)+…............ 
 
Where the component un(x), n≥0 are to be determined in 
a recursive manner.  
 
with u0(x) as the term external the integral sign.  
 
The integral equation is 
 

𝑢(𝑥) = 𝑓(𝑥) + λ ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
                       (1.5) 

 

Hence 
 
u0(x)=f (x).                    (1.6) 
 

putting equation (1.4) into equation  (1.5)then 

 
∑ 𝑢n(𝑥)∞

𝑛=0 = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)
𝑥

0
{∑ 𝑢n𝑡∞

𝑛=0 }𝑑𝑡         (1.7) 

 
If we indicate the parameters u0(x), u1(x), u2(x),... 
un(x)..., we are able to find out the components of the 
unknown function u(x) in an  on-going way.  
Then from (2.7) 

u1(x) =𝜆 ∫ 𝑘(𝑥, 𝑡)
𝑥

0
 u0(t)dt   

u2(x)= 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡
𝑥

0
     

u3(x)=𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢2(𝑡)𝑑𝑡
𝑥

0
 

        

Un(x)=𝜆 ∫ 𝑘(𝑥, 𝑡)
𝑥

0
𝑢𝑛−1(𝑡)𝑑𝑡             (1.8) 

and so on. 
 
This set of equations (5) can be written in compact 
recurrence scheme as 
 
u0(x) = f (x).       

un+1(x)=λ ∫ k(x, t)un(t)dt      
x

0
              (1.9) 

 
It is important to note that many components may not 
be able to have the kernel integrated. 

Then, in order to approximate the function u, we 
truncate the series at a specific point (x). Another issue 
that requires consideration is the convergence of the 
infinite series solution. Many past workers in this area 
have tackled this issue. Therefore, it won't be said 
again here. We'll use various examples to show the 
technique. 
 
Analysis of Lane–Emden type Equation 
 
This part, correction functional is constructed and the 
solution to Eq. (1.4) is expressed in the  form of He's 
variational iteration. 
 

𝑦𝑛+1(𝑥) = 𝑦𝑛(𝑥) + ∫ 𝜆(𝑡) [(𝑌𝑛)𝑡𝑡 +
2

𝑡
(𝑦𝑛)𝑡 + 𝑓(𝑡, 𝑦𝑛) −

𝑥

0

𝑔(𝑡)]𝑑𝑡]                              (1.10) 

 
To determine the optimal value of λ(s), we continue as 
follows; 
 

δyn+1(x)=δyn(x)+δ∫ 𝜆(𝑡) [(𝑌𝑛)𝑡𝑡 +
2

𝑡
(𝑦𝑛)𝑡 +

𝑥

0

𝑓(𝑡, 𝑦𝑛)𝑔(𝑡)]𝑑𝑡]                                                   (1.11) 

δyn+1(x)=δyn(x)+δ∫ 𝜆(𝑡) [(𝑌𝑛)𝑡𝑡 +
𝑥

0
2

𝑡
(𝑦𝑛)𝑡+]𝑑𝑡]                                                                     (1.12) 

which gives 

δyn+1(x) = [1 − λ ′ (x) + 
2

𝑥
 λ(x) ]· δyn(x) + δλ(x) · (yn)t(x) 

+ ∫ ⬚
𝑥

0
δyn [λ ′′(t) − 2 tλ ′ (t) − 

𝜆(𝑡)

𝑡2  ]dt= 0.                                                                                                                                                                           

(1.12) 
 

Hence, the stationary conditions can be obtained from 
Eq. (2.12) as; 
 

1 − λ ′ (x) + 
2

𝑥
 λ(x) = 0,      λ(x) = 0    λ ′′(x) − 2 

x λ ′(𝑥)−𝜆(𝑥)

𝑥2   

= 0.                                             (1.13)                 
 
When it is found that the Lagrange multiplier is 

λ(t) =  
𝑡2  

𝑥
− 𝑡 

Finally, the iteration formula can be found as: 
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 yn+1(x) = yn(x) +∫ [
𝑡2

𝑥

𝑥

0
− 𝑡] (𝑌𝑛) 𝑡𝑡 

2

𝑡
 (𝑦𝑛)𝑡 + 𝑓(𝑡, 𝑦𝑛) −

𝑔(𝑡)]𝑑𝑡]    
 
Modified Decomposition Method (MDM) 
 

u(x) = f(x) + λ ∫ k(x, t)u(t)dt
x

0
  

 
The function f(x) can be defined in this approach as the 
sum of two partial functions, f1(x) and f2(x). To put it 
another way, we can 
 
f(x) = f(x1) + f(x2)  
 
This introduces the recurrence relation 
 
u0(x) = f 1(x) 

u1(x) = f 1(x)+𝜆 ∫ 𝑘(𝑥 𝑡)𝑢0𝑡𝑑𝑡
𝑥

0
 

uk+1=𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢𝑘𝑡𝑑𝑡
𝑥

0
 

 
HE’S Homotopy Perturbation Method 
 
This approach is very beneficial for resolving nonlinear 
equations. 
 
Think about the common non-linear equation 𝐴(𝑢) −

∫(𝑟) = 0, 𝑟 ∈ Ω with condition  
 
𝐴(𝑥) − ∫(𝑦) = 0, 𝑟 ∈ Ω  

𝐴(𝑥) − (𝑢,
𝜕𝑥

𝜕𝜋
) 0, 𝑟 ∈ r Ω  

 
Where A is general differential. B a boundary operator, 
f(y) a known analytic function and T is the boundary Ω.  
The operator A can be replaced by L and N. wher L a 
linear and N is nonlinear. Therefore  
 
𝐴(𝑥) − 𝑓(𝑦) = 0  
Becomes  
𝐿(𝑥) + 𝑁(𝑥) − 𝑓(𝑥) = 0,                                    
(2.1)  
Using Homotopy, we define 𝑣(𝑦, 𝑝): Ω × [0.1] → 𝑅 𝑎𝑠  
𝐻(𝑣, 𝑃 ) = (1 − 𝑃)[𝐿(𝑣) − 𝐿(𝑥0)] + 𝑃 [𝐴(𝑣) − 𝑓(𝑦)] =
0                                                       (2.2) 
𝑃 ∈ [0.1]           
Or  
𝐻(𝑣, 𝑃0 = 𝐿(𝑣) − 𝐿(𝑥0) + 𝑃𝐿(𝑥0) + 𝑃[𝑁(𝑣) − 𝑓(𝑦)] =
0                                             (2.3)  
𝑊ℎ𝑒𝑟𝑒 𝑝 ∈
[0.1]𝑎𝑛𝑑 𝑢0is the initial approximation 𝑜𝑓 𝐴(𝑢) −
𝑓(𝑟) = 0  Satisfy the  
Given condition Clearly,  
𝐻(𝑣, 𝑜) = 𝐿(𝑣) − 𝐿(𝑥0) = 0              (2.4)   
𝐻(𝑣, 1) = 𝐴(𝑣) − 𝑓(𝑦) = 0               (2.5)  

 
Comparable to how v(r,p) changes from v 0 (r) to u is 
the change of p from zero to unity (r). L(v) -L(u 0) and 
A(v) -f(r) are homotopic in this deformation. The 
answer to (1.12) and (1.13) has the following form if p 
is a small parameter: 

𝑣 = 𝑣0 + 𝑝𝑣1 + 𝑝2𝑣2 + ⋯                         (2.6)  
𝐹𝑜𝑟, 𝑝 = 1, 𝑤𝑒 ℎ𝑎𝑣𝑒                (2.7)  
𝑢 = 𝑙𝑖𝑚𝑝→1𝑣 = 𝑣0 + 𝑣1 + 𝑣2 + ⋯  

 
It is established that (2.7) converges. Implying this 
approach because homotopy makes it simple to choose 
an initial approximation, the perturbation equation can 
be constructed in a variety of ways. Homotopy also 
plays a significant role in providing the necessary 
precision. 
 
Example 1:  
Consider non-linear BV problem  

y′′ −
1

x
y′ =

x2

3
y5                 (3.1)  

y(0) = 1, y′(1) =
√3

8
                (3.2)  

(a) Solution using MADM:  

We define L1 =
x3d

dx
(

x−1d

dx
) 

L1
−1(. ) = ∫ x

x

0
∫ x−3x

1
(. )dx dx  

Equation (3.1) becomes  

L1y =
x4

3
y5  

Applying 𝐿1
−1on the sides  

L1
−1L1y =

L1
−1x4

3
y5  

∫ x
x

0
∫ x−3x

1
[x3 d

dx
(x−1 dy

dx
)] dx  dx = L1

−1  
x4

3
y5  

∫ x
x

0
|x−1y′|1

xdx =
L1

−1x4

3
y5  

∫ x
x

0
|[x−1y′(x) − y′(1)]|1

xdx = L1
−1 x4

3
y5  

|y(x)|0
x − |

x2

2
y′(1)|

0

x

= L1
−1  

x4

3
y5  

y(x) − y(0) −
x2

2
y′(1) = L1

−1 x4

3
y5  

y(x) = y(0) +
1

2
y′(1)x2 +

L1
−1x4

3
y5  

For linear function we use decomposition series. 
yn(x) = ∑ yn

∞
n=0   

For y5 using polynomial series where y5 is nonlinear  
F(y) = ∑ yn

∞
n=0   

∑ yn
∞
n=0 = y(0) +

1

2
y′(1)x2 + L1

−1 (
x4

3
∑

∞
n = 0

An)  

This gives  

y0(x) = y(o) +
1

2
y′(1)x2  

Using (3.2)  

y0(x) = 1 −
√3

16
x2 = 1 − .108253x2  

𝑦𝑛+1 = 𝐿1
−1𝐴𝑛                𝑛 ≥ 0              (3.3)  

Now for n=0 

y1 = L1
−1 (

x4

3
A0)  

A0 = F(y0) = y0
5  

A0 = (1 −
√3

16
x2)

5

  

A0 = L1
−1  

x4

3
 (1 −

√3

16
x2)

5

  

y1 =
1

3
∫ x

x

0
∫ x−3[x4(1 = 0.108253x2)5dxdx

x

1
  

y1 =
(1−0.108253x2)

7
 

5.9062231
+ .0114411x2  

y1 = −0.0637827x2 + .416666x4 − .0075176x6  +
.00081380x8 − .00005286x10 + 1.9073486 ×
10−6x12 − 2.9496649 × 10−8x14  
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y2 = L1
−1 (

x4

3
A1)  

A1 = y1F′(y0) = y1. 5y0
4 = 5y0

5y1  
y2 = .0062577x2 − .0044294x6 + .0024057x8  −
.0006259x10 + .0001017x12 − .0000114x14 + ⋯,  
y2 = −.0010668x2 + .000436x6 + .0001884x8 −
.0003595x10 + .0001864x12 − .0000553x14 + ⋯,  
So the Approximate solution is: 
y = y0 + y1 + y2 + y3  
y = 1 − .1668450x2 + .0416667x4 − .0115124x6 +
.0034079x8 − .0010384x10 + .0002900x12 −
.0000668x14 + ⋯  
 
Summary results by MLDM 
 

Table 3.1 Summary of the Results from Example 1 
 

X Exact Approximate Error 

.1 .998337488459588 0.998335705191570 1.7882688080E-05 

.15 .996270962773433 0.996270962773438 4.0917585350E-05 

.2 .100 400268898783 0.993392138545470 6.1302544139E-05 

.25 .989743318610788 0.989732188429514 1.1340181275E-06 

.3 .1000329277764294 0.983313275341990 1.5992822399E-06 

.35 .980188050780010 0.980166325291873 2.172588135E-06 

.4 .974354703692116 0.974326441932890 2.8871579776E-04 

.45 .967867833691654 0.967832282253857 3.6004737800E-03 

.5 .960768922830528 0.960725402270505 4.5320569915E-05 

.55 .953101634249033 0.953049592551692 5.2142697351E-05 

.6 .944911182523070 0.944850221531165 6.0960991904E-05 

.65 .936243679766950 0.936173601673489 7.0077093473E-06 

.7 .927145540823121 0.927066389666090 7.8991158021E-03 

.75 .917662935482248 0.917575026686240 8.8008797706E-05 

.8 .907841299003203 0.907745217880645 9.5991122560E-05 

.85 .897724905923811 0.897621440407650 1.0436551616E-03 

.9 .887356509416115 0.887246454882580 1.1905453453E-05 

.95 .876777046043595 0.876660772972148 1.2628307145E-04 

1 .8660254037844340 0.865919000000000 1.2340378444E-04 

 
Precise and approximate solutions are compared 
 

 
X-axis  
 

Figure 3.1: Graphical Comparison of Exact and 
Approximate Solution of Example 1 

 
Example 2:  
 

Let's say the BV Problem is nonlinear. 

𝑦−1 +
3

𝑥
𝑦′′ − 𝑦3 = 𝑔(𝑥)                          (3.4)  

𝑦(0) = 0, 𝑦′ = 0, 𝑦(1) = 𝑒,              (3.5)  
Where g(x) = 24𝑒𝑥 + 35𝑥𝑒𝑥 + 12𝑥2𝑒𝑥 + 𝑥3𝑒𝑥 − 𝑥9𝑒3𝑥. 
Using the T − series of g(x)with order 10.  
g(x) = g(T) = 24 + 60x + 60x2 + 35x3 + 14x4 +
21

5
x5 + x6 +

11

56
x7 +

11

336
x8  

−
30097

30240
𝑥9 −

64787

21600
𝑥10  

(a) Solution using MADM:  
We define  

L1 = x
d

dx
(x

d

dx
),  

L2 = x−2 d

dx′  

L1
−1 = ∫ x−1x

0
∫ x−1(. )dx.

x

0
  

 
𝐿1𝑦 = 𝑔𝑇(𝑥) + 𝐿2𝑦 + 𝑦3               (3.6) 
𝑟) = 𝐿1

−1𝐿2
−1𝑔𝑇 (𝑥) + 𝐿1

−1 + 𝐿1−1𝐿2
−1𝑦3           (3.7) 

 
Using polynomial series for y3 and decomposition 
series for y(x), we obtain 
yn(x) = ∑ yn

∞
n=0   

F(y) = ∑ An
∞
n=0   

yn(x) = ∑ yn
∞
n=0 = L1

−1L2
−1gT(x) + L1

−1(∑ yn
∞
n=0 )  +

l1
−1L2

−1(∑ An
∞
n=0 )  

Its provides recursive relation  
g(x) = L1

−1L2
−1gT(x)  

yk+1(x) = L1
−1yk + l1

−1L2
−1Ak, k ≥ 0  

 
The Adomian polynomials for 𝑦3are computed as  
sA0 = y0

3, 
A1 = 3y0

2y1  
A2 = 3y2y0

2 + 3y0y1
2  

A3 = 3y3y0
2 + 6y0y1y2 + y1

3  
Substituting 𝐿1

−1, 𝐿2
−1 into (3.7) The ADM leads to the 

following scheme: 

∫ x−1x

1
∫ x−1x

0
∫ x2x

0
 24 + 60x + 60x2 + 35x3 + 14x4 +

21

5
x5 + x6 +

11

56
x7 +

11

336
x8 −

30097

30240
x9 −

64787

21600
x10) dxdxdx  

0 = 0.88888889𝑥3 + 0.9375000𝑥4 + 0.4800000𝑥5 +
0.1620370𝑥6 + 0.0408163𝑥7 + 0.0082031𝑥8 +
0.0013717𝑥9 + 0.0001964𝑥10 + 0.0000246𝑥11 −
0.0005759𝑥12 − 0.0013652𝑥13  
Using Mat lab next iterations are  
0 = −0.0013652^ ∗  X^13 − 0.0005797^ ∗  X^12 +
0.000024597^ ∗  X^11 + 0.00019643^ ∗  X^10 +
.0013717^ ∗  X^9 + .00820231^ ∗  X^8 + .040816^ ∗
 X^7 + .16204^ ∗  X^6 + .48^ ∗  X^5 + .9375^ ∗  X^4 +
.88889^ ∗  X^3  
Y1 = 0.00000000000003445∗X42  

−0.0000000000000000017251∗39 −
0.00000000000000015707∗X38  
−0.0000000000000000010364∗X37 −
0.000000000000057408∗X36  
−0.000000000000000025719∗X35 −
0.00000000000087988∗X34  
−0.000000000000020773∗X33 −
0.000000000000000026549∗X32  
+0.0000000000000028639 +
0.0000000000000097034∗x30 +   
 

Sauessive iterations give us the following results  
y2 = 0.0109739x3 + 0.0036621x4 + 0.0007680x5 +
0.0001250x6 + 0.0000169x7 + 1.6799819 ×
10−9x11 + ⋯,  
y3=0.0012193x3 + 0.0002289x4 + 0.0000307x5 +
0.00000347x6 + 3.4693305 × 10−7x7 + 3.1292439 ×

0.75

0.8

0.85

0.9

0.95

1

1.05
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10−8x&8 + 2.5811748 × 10−9x9 + 1.9642857 ×
10−10x10 + 1.3884184 × 10−11x11 + ⋯,  
Approximated solution is: 𝑦 = 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 
y = 9998476x3 + .999947x4 + .4999987x5 + 1.666666x6 +
.0416667x7 + .0083333x8 + .0013888x9 + 0.0001984x10 +
0.0000248x11 + ⋯  
 

Table 3.2: Summary of the results from example 2 
 

X Exact Approximate Error 

.1 0.001105170918057 0.001105016875013 1.5394306500E-06 

.15 0.004022190569288 0.003920668374150 5.2219506000E-06 

.2 0.001088222066398 0.009769977965300 1.2440999930E-07 

.25 0.019962777135736 0.020060454835328 2/4423004360E-07 

.3 0.046448887804772 0.036441945868720 4.2419358440E-07 

.35 0.059842251154939 0.060835750446840 6.8806100100E-07 

.4 0.055576780849004 0.095466621743900 1.0158905251E-06 

.45 0.153012448002792 0.142897908312666 1.4539600116E-05 

.5 0.216080158837466 0.206070110156260 2.0048681366E-06 

.55 0.288369970847688 0.288343145530644 2.7025417044E-05 

.6 0.393577660884350 0.393542648421666 3.5012462795E-06 

.65 0.452055488167541 0.526010642095518 4.4758072426-04 

.7 0.690717178662373 0.690660961451320 5.6217211056E-07 

0.75 0.893109382008472 0.893039826223288 6.9555785289E-04 

0.8 1.139476955388140 1.139391998513388 8.4956873760E-07 

0.85 1.436835622939040 1.436732991814180 1.0263112585E-07 

0.9 1.793050668033410 1.792927834728430 1.2283340507E-06 

0.95 2.216922819155922 2.216776931163770 1.4588799226E-07 

1 2.718281828459045 2.718109700000000 1.7222875904E-06 

 
Comparison of exact and approximate solutions 
 

 
X-axis 
 
Conclusions 
 
In this thesis, the Modified Laplace decomposition 
method (MLDM), modified adomian decomposition 
method (MADM), and homotopy perturbation method 
(HPM), have been used to solve the nonlinear singular 
initial value problems. In this case of nonlinear initial 
value problems (IVPs), and the boundary value 
problems (BVPs), the homotopy  perturbation is used. 
While complicated and challenging calculations are 
overcome by He,s homotopy perturbation method  
(HPM). The outcomes obtained due to approximations 
for higher order nonlinear boundary and initial value 
problems are compared. It is found that modified 
laplace decomposition method is a less time consuming 
tool as compared to modified adomian decomposition 
and homotopy perturbation method. The comparison 
of the results obtained using these three methods 
shows nearly identical findings. The proposed method 
is also more efficient to overcome the singular 
behaviour of problems and it illustrates the 

approximations of high precision with a large effective 
region of convergence. 
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